1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
| df.groupby(['班级','性别'])['身高'].agg([np.sum,np.mean,np.std]) df.groupby(['班级','性别']).agg({'身高':['min'],'体重':['max']}) df.groupby('flee').agg({'身高': [np.median, np.mean], 'signs': np.mean}) df.agg({'A':np.sum,'B':np.mean}) df[['A','B']].agg([np.sum,np.mean,np.min])
df.groupby(df['生日'].apply(lambda x:x.year)).count()
df.groupby(df['生日'].apply(lambda x:x.year),as_index=False).first()
df.groupby(df['生日'].apply(lambda x:x.month),as_index=False).filter(lambda x: len(x)==1) data2.groupby('var').filter(lambda x:len(x)>=10) data.groupby(data.index.year)['年龄'].mean()
final3_1 = data_jiep.groupby(['产业线','模号']).apply(lambda g: np.average(g['平均节拍'], weights=g['模次'])).reset_index()
data.groupby('race')['flee'].value_counts().unstack().plot(kind='bar', figsize=(20, 4)) data.groupby('flee')['age'].plot(kind='kde', legend=True, figsize=(20, 5))
df.groupby('key').aggregate('min', np.median, max)
df.groupby('key').filter(某个函数)
df.groupby('key').transform(lambda x: x- x.mean())
df = pd.DataFrame({'AAA': [1, 1, 1, 2, 2, 2, 3, 3],'BBB': [2, 1, 3, 4, 5, 1, 2, 3]}) df.loc[df.groupby("AAA")["BBB"].idxmin()]
df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
df["Order_Total"] = df.groupby('order')["ext price"].transform('sum')
result0 = data1.to_period('Q').groupby(level=0).apply(lambda x :len(x['var'].unique().tolist()))
|